
CHAPTER 5

Introduction to Sturm-Liouville Theory and the Theory of
Generalized Fourier Series

We start with some introductory examples.

5.1. Cauchy’s equation

The homogeneous Euler-Cauchy equation (Leonhard Euler and

Augustin-Louis Cauchy) is a linear homogeneous ODE which can be written as

(*) x2y′′+axy′+by = 0.

Example 5.1. Solve the equation (*).

Solution: Set y(x) = xr, then y′(x) = rxr−1 and y′′(x) = r(r−1)xr−2. If we insert this into (*) we get

r(r−1)xr +arxr +bxr = 0,

which gives us the equation

(**) r(r−1)+ar +b = 0.

This is the so-called Characteristic equation corresponding to (*). Assume that the solutions of (**) are
r1 and r2 . We have three different cases:

1. If r1 and r2 are real and different, r1 6= r2 then

y(x) = Axr1 +Bxr2 .

2. If r1 and r2 are real and equal, r1 = r2 = r then

y(x) = Axr +Bxr lnx.

3. If r1and r2 are complex conjugates, r1 = α+ iβ, r2 = α− iβ then

y(x) = Axα+iβ +Bxα−iβ.

♦

REMARK 6. Observe that

xα+iβ = xαeiβ lnx = xα (cos(β lnx)+ isin(β lnx))

and
xα−iβ = xα (cos(β lnx)− isin(β lnx)) ,

hence we can write the solution of case 3 in the example above as

y(x) = xα ((A+B)cos(β lnx)+ i(A−B)sin(β lnx)) .
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If we only consider constants A and B such that C = A + B and D = i(A−B) are real numbers then we
see that

y(x) = xα (C cos(β lnx)+Dsin(β lnx))

is a real-valued solution to (*).

Example 5.2. Solve the differential equation

x2y′′+2xy′−6y = 0.

Solution: The characteristic equation is

r(r−1)+2r−6 = 0,

i.e.
r2 + r−6 = 0

which has the solutions
r1 = 2, r2 =−3.

Since we have two different real solutions we are in case 1 above, and the general solution to the
differential equation is given by

y(x) = Ax2 +Bx−3.

♦

Example 5.3. Solve the equation

x2y′′+2xy′+λy = 0, λ >
1
4
.

Solution: The characteristic equation is

r2 + r +λ = 0,

with solutions

r =−1
2
±
√

1
4
−λ =−1

2
± i

√
λ− 1

4
.

Since we now have two complex conjugate solutions r1 = α + iβ and r1 = α− iβ we are in case 3
above, and the general solution to the differential equation is given by

y(x) = Ax−
1
2

(
sin

(√
λ− 1

4
lnx

)
+Bcos

(√
λ− 1

4
lnx

))
.

5.2. Examples of Sturm-Liouville Problems

In the next section we will describe in more details what is meant by a Sturm-Liouville problem (Charles-
Fran cois Sturm and Joseph Liouville), but first we will look at some examples.

Example 5.4. Solve {
y′′+λy = 0,

y(0) = y(l) = 0.

http://turnbull.mcs.st-and.ac.uk/history/Mathematicians/Sturm.html
http://turnbull.mcs.st-and.ac.uk/history/Mathematicians/Sturm.html
http://turnbull.mcs.st-and.ac.uk/history/Mathematicians/Liouville.html
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Solution: Previously (cf. section 4.8, p. 22) we saw that this problem can be solved if and only if

λ = λn =
(nπ

l

)2
, n = 1,2,3, . . . (eigenvalues)

with the corresponding solutions

yn(x) = an sin
(nπ

l
x
)

(eigenfunctions).

♦

Example 5.5. Solve 
X ′′(x)−λX(x) = 0, 0 ≤ x ≤ 1,

X(0) = 0,

X ′(1) =−3X(1).
Solution: We have three different cases:

λ = 0 X(x) = Ax+B, X(0) = 0 ⇒ B = 0, and X ′(1) =−3X(1) ⇒ A =−3A ⇒ A = 0. Hence, we
only get the trivial solution X(x)≡ 0.

λ > 0 With λ = p2 the solutions are given by X(x) = Aepx + Be−px. The boundary conditions
X(0) = 0 and X ′(1) =−3X(1) gives us the system{

X(0) = A+B = 0
X ′(1)+3X(1) = A

(
pep + pe−p)+3A

(
ep− e−p)= 0,

i.e. B =−A and A = 0 or ep(p+3)+e−p(p−3) = 0, but this expression is never 0 for p 6= 0
(show this!) and hence we must have A =−B = 0, and also in this case we get only the trivial
solution X ≡ 0.

λ < 0 With λ = −p2 we get the solution X(x) = Acos px + Bsin px, and the boundary conditions
are X(0) = A = 0, and X ′(1) =−3X(1) which gives pBcos px =−3Bsin px ⇒

B(pcospx+3sin px) = 0,

hence either B = 0, (and we get the trivial solution), or

(pcospx+3sin px) = 0,

i.e. p must satisfy the equation tan p =− p
3
.

Thus, we see that we only have non-trivial solutions when λ is an eigenvalue λ = λn =−p2
n, n = 1,2, . . . ,

where pn is a solution of tan p =− p
3

(see Fig. 5.2.1), and then we have the corresponding eigenfunctions

Xn(x) = an sin pnx.

♦

Example 5.6. Solve {
x2X ′′(x)+2xX ′(x)+λX = 0,

X(1) = 0, X(e) = 0.

Solution: The characteristic equation is

r(r−1)+2r +λ = 0
⇔

r2 + r +λ = 0



30 5. INTRODUCTION TO STURM-LIOUVILLE THEORY AND THE THEORY OF GENERALIZED FOURIER SERIES

FIGURE 5.2.1. Solutions to tan p =− p
3
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which has the solutions

r =−1
2
±
√

1
4
−λ =−1

2
± i

√
λ− 1

4
,

hence the cases we must investigate are λ <
1
4
, λ =

1
4

and λ >
1
4

(cf. Example 5.3).

λ <
1
4

With r1,2 = −1
2
±
√

1
4
−λ (different real ) we get the solutions X(x) = Axr1 + Bxr2 and the

boundary conditions gives{
X(1) = 0,

X(e) = 0,
⇔

{
A+B = 0,

Aer1 +Ber2 = 0,
⇔

{
A =−B,

A(er1 − er2) = 0,

i.e. since er1 6= er2 we must have A = 0 and we only get the trivial solution X ≡ 0.

λ =
1
4

Now we get a double root r = −1
2

and the solutions are X(x) = Ax−
1
2 + Bx−

1
2 lnx. The

boundary conditions give X(1) = A = 0 and X(e) = Be−
1
2 = 0, i.e. A = B = 0 and we only

get the trivial solution X ≡ 0.

λ >
1
4

The two complex roots r =−1
2
± i

√
λ− 1

4
give the solutions

X(x) =
A√
x

sin

(√
λ− 1

4
lnx

)
+

B√
x

cos

(√
λ− 1

4
lnx

)
,

and we get X(1) = B = 0, and X(e) =
A√
e

sin

(√
λ− 1

4

)
= 0 hence λ must satisfy

√
λ− 1

4
= nπ,

for some positive integer n. We get the eigenvalues

λn =
1
4

+(nπ)2 , n ∈ Z+,
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FIGURE 5.2.2. The Bessel function J0(x)

x

y
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and the corresponding eigenfunctions

Xn(x) =
An√

x
sin(nπ lnx) .

♦

Example 5.7. (The Bessel equation)
An important ordinary differential equation in mathematical physics is the Bessel equation (Wil-

helm Bessel) of order m:
r2w′′+ rw′+(r2−m2)w = 0.

The solutions (there are two linearly independent) to this equation are called Bessel functions of
order m. (For more information see e.g. Besselfunktions at engineering fundamentals). Here we will
only consider a special case.

Solve the following problem involving the Bessel equation of order 0:
d2w
dr2 +

1
r

dw
dr

+ k2w = 0,

w(R) = 0, w′(r) < ∞.

Solution: A general solution is given by

w(r) = C1J0(kr)+C2Y0(kr),

where J0 and Y0 are the Bessel functions of the first and second kind of order 0. It is known that
Y ′

0 is not bounded and if we impose the condition that w′(r) must be bounded we get C2 = 0. The
boundary condition implies that

w(R) = C1J0(kR) = 0,

and if we want a non-trivial solution (C1 6= 0) then k and R must satisfy J0(kR) = 0. It is well-known
that J0 has infinitely many zeros αn (α1 = 2.4047 . . . , α2 = 5.5201 . . . , α3 = 8.6537 . . . , . . . etc., see
Fig. 5.2.2). Hence we only get non-trivial solutions for the eigenvalues

kn =
αn

R
, n ∈ Z+,

with the corresponding solutions are the eigenfunctions

wn(r) = J0

(
αn

R
r
)

, n ∈ Z+.

http://turnbull.mcs.st-and.ac.uk/history/Mathematicians/Bessel.html
http://turnbull.mcs.st-and.ac.uk/history/Mathematicians/Bessel.html
http://www.efunda.com/math/bessel/bessel.cfm
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5.3. Inner Product and Norm

To construct an orthonormal basis in a vector space we must be able to measure lengths and angles.
Hence we must introduce an inner product (a scalar product). With the help of an inner product we can
easily determine which elements are orthogonal to each other. There are two examples of vector spaces
and inner products we will consider here. The plane R2 together with the usual scalar product, and a
vector space consisting of functions on an interval together with an inner product defined by an integral.

Vectors in R2

If we have two vectors~x = (x1,x2) and~y = (y1,y2), the inner product of~x and~y is defined by

~x ·~y = x1y1 + x2y2.

The norm of~x, |~x|, is defined by
|~x|2 =~x ·~x = x2

1 + x2
2,

and the distance between~x and~y, |~x−~y|, is given by

|~x−~y|2 = (x1− y1)
2 +(x2− y2)

2 .

The angle θ between~x and~y can now be computed using the relation

~x ·~y = |~x||~y|cosθ,

and we say that two vectors are orthogonal (perpendicular to each other),~x ⊥~y, if θ =
π

2
, i.e. if

~x ·~y = 0.

A Function Space

We now consider the vector space consisting of functions f (x) defined on the interval [0, l] (for some
l > 0) together with a positive weight-function r(x). The generalizations of the concepts above are

〈 f ,g〉=
Z l

0
f (x)g(x)r(x)dx, (inner product)

‖ f‖2 =
Z l

0
| f (x)|2 r(x)dx, (norm)

‖ f −g‖2 =
Z l

0
| f (x)−g(x)|2 r(x)dx, (distance)

〈 f ,g〉= ‖ f‖‖g‖cosθ, (angle)
f ⊥ g⇔ 〈 f ,g〉= 0 (orthogonality)

⇔
Z l

0
f (x)g(x)r(x)dx = 0.

5.4. Sturm-Liouville Problems

A general Sturm-Liouville problem can be written as(
P (x)y′

)′+(−q(x)+λr(x))y = 0, 0 < x < l,

c1y(0)+ c2y′(0) = 0,

c3y(l)+ c4y′(l) = 0.

Here r(x), q(x) and P (x) are given functions, c1, . . . ,c4 given constants and λ a constant which can only
take certain values, the eigenvalues corresponding to the problem. r(x) is usually called a weight function.
It is also customary to assume that r(x) > 0.
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If P (x) > 0 and c1, . . . ,c4 6= 0 we say that the problem is regular, and if P or r is 0 in some endpoint we
say that it is singular (note that there are other examples of both regular and singular SL problem, e.g.
the following problem is regular).

Example 5.8. r(x) = 1, P (x) = 1, q(x) = 0, c1 = c3 = 1, c4 = c2 = 0.
y′′+λy = 0,

y(0) = 0,

y(l) = 0.

(Cf. Example 5.4). In this case we have

λn =
(nπ

l

)2
, n = 1,2,3, . . . , (eigen values)

yn = sin
(nπ

l
x
)

, (eigen functions)

and

〈yn,ym〉 =
Z l

0
sin
(nπ

l
x
)

sin
(mπ

l
x
)

dx = 0, if n 6= m,

‖yn‖2 =
Z l

0

∣∣∣sin
(nπ

l
x
)∣∣∣2 dx =

Z l

0

1
2

(
1− cos

(nπ

l
x
))

dx =
l
2
.

If f is a function on the interval [0, l] we can define the Fourier series of f , S(x), by (cf. Section
6.1):

S(x) =
∞

∑
n=1

cn sin
(nπ

l
x
)

, where

cn =
1

‖yn‖2 〈 f ,yn〉=
2
l

Z l

0
f (x)sin

(nπ

l
x
)

dx.

REMARK 7. Examples 5.5-5.7 is also a Sturm-Liouville problem.

For a regular Sturm-Liouville problem we have:

(i) The eigenvalues are real and to every eigenvalue the corresponding eigenfunction is unique
up to a constant multiple.

(ii) The eigenvalues form an infinite sequence λ1,λ2, . . . and they can be ordered as

0≤ λ1 < λ2 < λ3 < · · · ,

with

lim
n→∞

λn = ∞.

(iii) If y1 and y2 are two eigenfunctions corresponding to two different eigenvalues, λi1 6= λi2 ,
they are orthogonal with the respect to the inner product defined by r(x), i.e.

〈y1,y2〉=
Z l

0
y1(x)y2(x)r(x)dx = 0.
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5.5. Generalized Fourier Series

We will now see how we can generalize the concept of Fourier series from the usual trigonometric basis
functions to an orthonormal basis consisting of eigenfunctions to a Sturm-Liouville problem.

Assume that we have an infinite linear combination

f (x) =
∞

∑
n=1

cnyn(x),

where yn ⊥ ym for n 6= m. Then

〈 f ,ym〉 =

〈
∞

∑
n=1

cnyn,ym

〉
=

∞

∑
n=1

cn 〈yn,ym〉

= cm 〈ym,ym〉= cm ‖ym‖2 .

Let f be an arbitrary function on [0, l]. Then we define the generalized Fourier series for f as

S(x) =
∞

∑
n=1

cnyn(x),

where

cn =
1

‖ym‖2 〈 f ,yn〉

are the generalized Fourier coefficients.

Let y1,y2, . . . be a set of orthogonal eigenfunctions of a regular Sturm-Liouville problem, and let f be a
piece-wise smooth function in [0, l]. Then, for each x in [0, l] we have that

(a) S(x) = f (x) if f is continuous at x, and

(b) S(x) =
1
2

( f (x+)+ f (x−)) if f has a discontinuity point at x.

5.6. Some Applications

Example 5.9. Consider a rod of length l, with constant density ρ, specific heat cv and thermal conduc-
tance κ. Let the temperature of the rod at the time t and the distance x (from, say, the left end point)
be denoted by u(x, t). Assume that the temperature at the end points of the rod are given by

u(0, t) = u(l, t) = 0, t > 0,

and that the temperature distribution in the rod at the initial time t = 0 is given by

u(x,0) = f (x), 0≤ x ≤ l.

Determine u(x, t) for 0≤ x ≤ l, and t ≥ 0.
Solution: We have seen (cf. Chapter 1) that the mathematical formulation of this problem is

u′t(x, t)− ku′′xx(x, t) = 0, 0≤ x ≤ l, t ≥ 0, k =
κ

cV ρ
,

u(0, t) = u(l, t) = 0, t > 0,

u(x,0) = f (x), 0≤ x ≤ l.

(*)

We begin by performing the following natural scaling of the problem (cf. Chapter 1):

(5.6.1) t =
k
l2 t, x =

x
l
.

http://www.sm.luth.se/~johanb/applmath/chap1/
http://www.sm.luth.se/~johanb/applmath/chap1/


5.6. SOME APPLICATIONS 35

Then we arrive at the following standard problem to solve:

(1)

(2)

(3)


ũ′t (x, t)− ũ′′xx (x, t) = 0, 0≤ x ≤ 1, t ≥ 0,

ũ(0, t) = ũ(1, t) = 0, t > 0,

ũ(x,0) = f̃ (x), 0≤ x ≤ 1,

where f̃ (x) = f (xl). We can now use Fourier’s method to solve this problem (cf. section 4.8).
Step 1: Try to find solutions of the type

ũ(x, t) = X(x)T (t).

If we insert this expression in (1) above we get

T ′(t)
T (t)

=
X ′′(x)
X(x)

=−λ,

i.e. the two equations

X ′′(x)+λX(x) = 0,and(A)

T ′(t)+λT (t) = 0.(B)

The function u(x, t) = X(x)T (t) must also satisfy the boundary conditions (2):

X(0)T (t) = X(1)T (t) = 0, t ≥ 0,

and if we want a non-trivial solution (T 6≡ 0) we conclude that

X(0) = X(1) = 0.

This boundary condition together with (A) gives us the Sturm-Liouville problem

(**)

{
X ′′(x)+λX(x) = 0,

X(0) = X(1) = 0.

Step 2: We get three cases depending on the value of λ : λ < 0, λ = 0, and λ > 0.
λ < 0 We get only the trivial solution X(x)≡ 0.
λ = 0 We get only the trivial solution X(x)≡ 0.
λ > 0 Then

X(x) = Asin
(√

λx
)

+Bcos
(√

λx
)

,

and X(0) = 0⇒ B = 0, and X(1) = 0⇒ Asin
(√

λ

)
= 0⇒ A = 0 or

√
λ = nπ, n∈Z+.

Thus the SL-problem (**) has the following eigenvalues

λn = (nπ)2 , n ∈ Z+,

and the corresponding eigenfunctions

Xn(x) = sin(nπx) .

Furthermore, for these values of λ = λn, the equation (B) has the solution

T (t) = Tn(t) = e−(nπ)2t ,

and we conclude that the general (separable) solution of (1) and (2) can be written as

ũn(x, t) = cn sin(nπx)e−(nπ)2t .

Step 3: The superposition principle (cf. section 4.5) tells us that the function

ũ(x, t) =
∞

∑
n=1

b̃n sin(nπx)e−(nπ)2t
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also satisfy (1) and (2). We will now see that we can also assert that this function satisfy the initial
condition (3) by choosing appropriate constants b̃n . It is clear that

ũ(x,0) =
∞

∑
n=1

b̃n sin(nπx) ,

and if we choose the b̃n’s as the Fourier coefficients of f̃ , i.e.

b̃n = 2
Z 1

0
f̃ (x)sin(nπx)dx,

we actually get

ũ(x,0) =
∞

∑
n=1

b̃n sin(nπx) = f̃ (x).

We conclude that the function

ũ(x, t) =
∞

∑
n=1

b̃n sin(nπx)e−(nπ)2t ,

with b̃n as above satisfy (1), (2) and (3).
Final step: By using the scaling from (5.6.1) we see that the solution to the original problem is

given by

u(x, t) =
∞

∑
n=1

bn sin
(nπ

l
x
)

e−( nπ

l )2
kt ,

where

bn =
2
l

Z l

0
f (x)sin

(nπ

l
x
)

dx.

♦

Example 5.10. Consider a rod between x = 1 and x = e. Let u(x, t) denote the temperature of the rod
at the point x and time t. Assume that the end points are kept at the constant temperature 0, that at
the initial time t = 0 the rod has a heat distribution given by

u(x,0) = f (x), 1 < x < e,

that no heat is added and that the rod has constant density ρ and specific heat cv. Assume also
that the rod has heat conductance K which varies as K(x) = x2. The equation which determines the
temperature u(x, t) is in this case

cvρu′t =
∂

∂x

(
x2u′x

)
,1 < x < e, t > 0.(1)

Determine u(x, t) for 1≤ x ≤ e, and t > 0.
Solution: We apply Fourier’s method of separating the variables and assume that we can find a

solution of the form u(x, t) = X(x)T (t). Inserting this expression in (1) above we get

cvρ
T ′

T
=

1
X

d
dx

(
x2X ′)=−λ,

where λ is a constant and X satisfies the boundary condition

X(1) = X(e) =0.(2)

Thus T satisfies the equation

T ′ =− λ

cvρ
T,(3)
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and X satisfies
d
dx

(
x2X ′)+λX = 0,1 < x < e

⇔

x2X ′′+2xX ′+λX = 0,1 < x < e.(4)

The equation (4) together with the boundary condition (2) gives us a regular Sturm-Liouville problem
on [1,e]. The characteristic equation is

r(r−1)+2r +λ = 0,

with the roots

r1,2 =−1
2
±
√

1
4
−λ.

As in Example 5.6 we get three different cases depending on the value of λ:

λ =
1
4

We have a double root r =−1
2
, and the solutions are given by X(x) = Ax−

1
2 +Bx−

1
2 lnx.

The boundary condition (2) gives X(1) = A = 0 and X(e) = Be−
1
2 = 0, i.e. we get only

the trivial solution X ≡ 0.
λ <

1
4

The roots are now real and different, r1 6= r2, and the solutions are

X(x) = Axr1 +Bxr2 .

The boundary conditions gives us{
X(1) = A+B = 0
X(e) = Aer1 +Ber2 = 0

⇒

{
A =−B,

A(er1 − er2) = 0,

and since r1 6= r2 we must have A = 0, and we only get the trivial solution X ≡ 0.

λ >
1
4

We have two complex roots r =−1
2
± i

√
λ− 1

4
, and the general solution is

X(x) =
A√
x

sin

(√
λ− 1

4
lnx

)
+

B√
x

cos

(√
λ− 1

4
lnx

)
.

The boundary conditions imply that X(1) = B = 0 and X(e) = Ae−
1
2 sin

(√
λ− 1

4

)
=

0, which us gives that √
λ− 1

4
= nπ, n ∈ Z+.

Observe that the case n = 0 is the same as λ =
1
4

. Hence the eigenvalues of the Sturm-Liouville problem
(4) and (2) are

λn =
1
4

+n2
π

2, n ∈ Z+,

and the corresponding eigenfunctions are

Xn(x) =
1√
x

sin(nπ lnx) , n ∈ Z+.

For every fixed n, the equation (3) is

T ′
n =− λn

cvρ
Tn,
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with the solutions
Tn(t) = e−

λn
cvρ

t
, n ∈ Z+.

We conclude that the functions

un(x, t) = Tn(t)Xn(x) =
1√
x

sin(nπ lnx)e−
λn
cvρ

t
, n ∈ Z+,

are solutions to the original equation, and they also satisfy the boundary conditions. The superposition
principle implies that the function

u(x, t) =
∞

∑
n=1

an
1√
x

sin(nπ lnx)e−
λn
cvρ

t

is also a solution of the equation which satisfy the boundary conditions. Finally, to accommodate the
initial values we must choose the constants an so that

u(x,0) =
∞

∑
n=1

an
1√
x

sin(nπ lnx) = f (x),

This holds if we choose the constants an as

an =
1

‖Xn‖2

Z e

1
f (x)Xn(x)dx

= 2
Z e

1
f (x)

1√
x

sin(nπ lnx)dx.

(Note that ‖Xn‖2 =
Z e

1

1
x

sin2 (nπ lnx)dx =
1
2

.) The wanted temperature distribution is thus given by

u(x, t) =
∞

∑
n=1

an
1√
x

sin(nπ lnx)e−
λn
cvρ

t
,

where

an = 2
Z e

1

f (x)√
x

sin(nπ lnx)dx.

♦

Example 5.11. Solve the problem:

∂u
∂t

=
∂2u
∂x2 ,(1)

u(0, t) =0,(2)

u′x(1, t) =−3u(1, t),(3)

u(x,0) = f (x).(4)

Solution: We use Fourier’s method of separation of variables.
Step 1: Assume that u(x, t) = X(x)T (t) and insert this into (1). In the same way as in the

previous examples we obtain the equation

T ′(t)
T (t)

=
X ′′(x)
X(x)

= λ,

which gives us the two equations

T ′(t)−λT (t) = 0,(5)

X ′′(x)−λX(x) = 0.(6)

Step 2: There are three cases of λ we must study.
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λ = 0 The solutions to (5) and (6) are then T =constant, and X = Ax+B, i.e. u(x, t) = Ax+B
for some constants A and B. The boundary value (2) gives u(0, t) = B = 0, and (3)
gives u′x(1, t) = A = −3u(1, t) = −3A, i.e. A = 0 and we only get the trivial solution
u(x, t)≡ 0.

λ > 0 The solutions to (5) are T (t) = Aeλt and the solutions to (6) are X(x) = Be
√

λx +Ce−
√

λx.

The boundary value (2) gives u(0, t) = T (t)X(0) = Aeλt(B+C) = 0, hence either A = 0
(which implies u≡ 0) or B =−C. The condition (3) is now equivalent to

Aeλt
√

λB
(

e
√

λ + e−
√

λ

)
= −3AB

(
e
√

λ− e−
√

λ

)
,

⇔
ABe2

√
λ

(
3+

√
λ

)
= AB

(
3−

√
λ

)
,

which is only satisfied if AB = 0 (show this!), and in this case we only get the trivial
solution u≡ 0.

λ < 0 If we set λ =−p2 we get (in the same manner as in Example 5.5) the solutions

(*) un(x, t) = Bne−p2
nt sin pnx, n = 1,2,3, . . . ,

where pn are solutions to the equation

tan p =− p
3
.

Step 3: All functions defined by (*) satisfy (1), (2) and (3). According to the superposition principle
the function

u(x, t) =
∞

∑
n=1

Bne−p2
nt sin pnx

also satisfies (1), (2) and (3). Furthermore, (6) with the corresponding boundary conditions is a
regular Sturm-Liouville problem and the theory of generalized Fourier series implies that u(x, t) will
satisfy (4):

u(x,0) =
∞

∑
n=1

Bn sin pnx = f (t)

if we choose the constants Bn as

(**) Bn =
〈 f (x),sin pnx〉
‖sin pnx‖2 =

R 1
0 f (x)sin pnxdxR 1

0 sin2 pnxdx
.

Thus, the solution to the problem is

u(x, t) =
∞

∑
n=1

Bne−p2
nt sin pnx,

where pn are the positive solutions of tan p =− p
3

, p1 < p2 < · · · (see Fig. 5.2.1), and Bn is defined
by (**).

♦
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Example 5.12. (The wave equation) A vibrating circular membrane with radius R is described by the
following equation together with boundary and initial values:

u′′tt = c2 (u′′xx +u′′yy
)
, t > 0, r =

√
x2 + y2 ≤ R,(1)

u(R, t) = 0, t > 0, (fixated boundary)(2)

u(r,0) = f (r),r ≤ R, (initial position)(3)

∂u
∂t

(r,0) = g(r),r ≤ R. (initial velocity)(4)

Observe that the initial conditions only depend on r =
√

x2 + y2 = the distance from the center of
the membrane to the point (x,y), and if we introduce polar coordinates{

x = r cosθ,

y = r sinθ,

we see that (1) can be written as

∂2u
∂t2 = c2

(
∂2u
∂r2 +

1
r

∂u
∂r

+
1
r2

∂2u
∂θ2

)
.

If we also make the assumption that u(r,θ, t) is radially symmetric (i.e. that u(r,θ, t) is independent
of the angle θ) we can write (1) as

(1’)
∂2u
∂t2 = c2

(
∂2u
∂r2 +

1
r

∂u
∂r

)
.

To solve the problem we continue as before and use Fourier’s method to separate the variables. With
the function u(r, t) = W (r)G(t) inserted into (1’) we get the equations

W ′′+
1
r

W ′+ k2W = 0, 0≤ r ≤ R,(5)

G′′+(ck)2G = 0, t > 0.(6)

Furthermore, we get the following boundary values from (2):

(7) W (R) = 0,

and (5) together with (7) is a regular Sturm-Liouville problem which gives us the eigenfunctions

Wn(r) = J0

(
αn

R
r
)

,

where αn = knR are solutions of J0(kR) = 0 (see Example 5.7). Observe that if we write (5) in the
general form we see that we have the weight function= r, i.e. the inner product is given by

〈 f ,g〉=
Z R

0
f (r)g(r)rdr.

By solving (6) for k = kn and using the superposition principle we see that

(*) u(r, t) =
∞

∑
n=1

(
An cos

(cαn

R
t
)

+Bn sin
(cαn

R
t
))

J0

(
αn

R
r
)

is a solution to (1) and (2). And we can also choose the constants An so that (3) is satisfied, i.e.

u(r,0) =
∞

∑
n=1

AnJ0

(
αn

R
r
)

= f (r),

if

(**) An =
1R R

0 J0
(

αn
R r
)2 rdr

Z R

0
f (r)J0

(
αn

R
r
)

rdr.
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In the same way we see that (4) is satisfied if we choose Bn so that

(***) Bn
cαn

R
=

1R R
0 J0

(
αn
R r
)2 rdr

Z R

0
g(r)J0

(
αn

R
r
)

rdr.

Hence, the answer to the problem is given by (*) where An and Bn are chosen as in (**) and (***).

♦

5.7. Exercises

5.1. [A] Solve the following S-L problem by determining the eigenvalues and eigenfunctions:
(a)

(
x2u′(x)

)′
+λu(x) = 0, 1 < x < eL, u(1) = u

(
eL)= 0,

(b)
(
x2u′(x)

)′
+λu(x) = 0, 1 < x < eL, u(1) = u′ (e) = 0.

5.2.* Solve the following S-L problem by determining the eigenvalues and eigenfunctions:
(a) u′′(x)+λu(x) = 0, 0 < x < l, u′(0) = u′(l) = 0,
(b) u′′(x)+λu(x) = 0, 0 < x < l, u′(0) = u(l) = 0.

5.3. [A] Use Fourier’s method to solve the following problem:

u′t = u′′xx, 0≤ x ≤ l, t > 0,

u′x(0, t) = u′x(l, t) = 0, t > 0,

u(x,0) = f (x), 0 < x < l.

5.4.* A rod between x = 1 and x = e has constant temperature 0 at the endpoints, and at the time
t = 0 the heat distribution is given by

√
x, 1 < x < e. The rod has a constant density ρ and constant

specific heat C, but its thermal conductance varies like K = x2, 1 < x < e. Formulate an initial and
boundary values problem for the temperature of the rod, u(x, t). Then use Fourier’s method to solve
the problem.

5.5.*
(a) Solve the problem

u′t = 4u′′xx, 0≤ x ≤ 1, t > 0,

u(0, t) = 0 t > 0,

u′x(1, t) = −cu(1, t), t > 0,

u(x,0) =

{
x,
1− x,

0≤ x <
1
2
,

x ≥ 1
2
.

(b) Give a physical interpretation of the problem in (a).
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5.6. [A] Consider an ideal liquid, flowing orthogonally towards an infinitely long cylinder by the radius
a. Since the problem is uniform in the axial coordinate we can treat the problem in plane polar
coordinates.

a

x

The speed of the liquid,~v(r,θ) is then given by the equation

~v(r,θ) =−gradψ,

where ψ as a solution of the Laplace equation

∆ψ = 0.

At the surface of the cylinder we have the boundary condition
∂ψ

∂r
|r=a = 0,

and as r → ∞ we have the following asymptotic boundary condition

lim
r→∞

ψ

x
= lim

r→∞

ψ

r cosθ
=−v0,

where v0 is a constant.
a) Show, using separation of variables, that in polar coordinates, the assumption ψ(r,θ) =

R(r)Θ(θ) transforms the Laplace equation to the following two equations

Θ
′′(θ)+m2

Θ(θ) = 0,

R′′(r)+
1
r

R′(r)− m2

r2 R(r) = 0,

where m is an integer.
b) Use a) to find ψ and~v.


